If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-6x-10800=0
a = 1; b = -6; c = -10800;
Δ = b2-4ac
Δ = -62-4·1·(-10800)
Δ = 43236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{43236}=\sqrt{36*1201}=\sqrt{36}*\sqrt{1201}=6\sqrt{1201}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{1201}}{2*1}=\frac{6-6\sqrt{1201}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{1201}}{2*1}=\frac{6+6\sqrt{1201}}{2} $
| x^2-6x+10800=0 | | x^2+6x+10800=0 | | x^2+60x+10800=0 | | 2x=180-170 | | 8x+6+5=51-2x | | m+-9=88 | | 4(q+1)=12q= | | 1+6x+6x=37 | | j−88=878 | | p+12=903 | | -x/7+26=-50 | | 529=u+145 | | -31=v/12 | | 12(x−7)=60 | | z+23=71 | | b+35=48 | | 8+4x/3=2+x | | t+-0.5=6.5 | | 2x−4+4x=26 | | -w/3+6-1=2 | | 92=d+21 | | 13=p/8 | | 6=6x+x+6 | | p+17=83 | | n+71=768 | | w+-41=-63 | | 39=m−59 | | u+16=22 | | m+5=-19 | | m+-5=-19 | | -y/5+4=15 | | -13=-4x+3x-10 |